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Indexing of documents is an important strategy in-
tended to make the literature more readily available 
to the user.  Here we describe several dimensions of 
indexing that are important if indexing is to be opti-
mal. These dimensions are coverage, predictability, 
and transparency. MeSH® terms and text words are 
compared in MEDLINE® in regard to these dimen-
sions. Part of our analysis consists in applying 
AdaBoost with decision trees as the weak learners to 
estimate how reliably index terms are being assigned 
and how complex the criteria are by which they are 
being assigned. Our conclusions are that MeSH 
terms are more predictable and more transparent 
than text words. 

INTRODUCTION 

Keyword indexing is a technique that has been used 
in many areas to categorize literature for easier and 
more accurate retrieval. Since texts naturally consist 
of words, one approach has been to tokenize a text 
and use some subset of the words obtained in this 
manner to characterize that text . This is what has 
become known as automatic indexing and is easily 
carried out by a simple computer program. A compet-
ing approach relies on a controlled vocabulary of 
keywords which are applied to a text by a human 
indexer.  Each of these methods has advantages and a 
debate has naturally arisen as to which method 
should be preferred. In several studies Salton1,  2 con-
cluded that generally the controlled vocabulary gave 
a slightly higher precision and the automatic indexing 
method a slightly higher recall, but the methods were 
comparable.  
Since the work of Salton, others have also compared 
automatic text word vs. controlled vocabulary index-
ing. Hersh and Hickman3 concluded that there was 
generally no benefit to use of concepts or controlled 
vocabularies over text words for indexing, but did find 
a small benefit in the use of MeSH by trained librari-
ans. Yang4 found an advantage to concepts provided 
their relations to text words could be automatically 
learned from a training corpus. Both Srinivasan5 and 
Kim, et al.6 found some benefit when the MeSH was 
added to text word indexing in a vector retrieval para-
digm.  
Here we again take up the question of the indexing 
vocabulary. We propose that a potential indexing 

vocabulary should be analyzed in terms of three im-
portant properties.  First, coverage denotes the accu-
racy and ease with which the average query may be 
expressed within the indexing vocabulary.  Clearly the 
indexing vocabulary forms the basis for a language in 
which queries must be expressed and documents 
represented. It must at least be adequate for queries 
to be expressed in order to serve the purpose of re-
trieval. Ideally such expressions should be simple to 
construct. It is clear that text words enjoy an advan-
tage in coverage because they are adequate to ex-
press virtually any query.  On the other hand con-
trolled vocabulary terms are generally limited in num-
ber and may not allow one to express certain queries. 
However a controlled vocabulary may allow the sim-
pler construction of certain queries because the con-
trolled vocabulary has been constructed to make this 
possible. For example a query of the form “Heart Fail-
ure, Congestive”[MeSH] has over 44 thousand hits in 
MEDLINE, whereas the phrase “congestive heart 
failure”  occurs in the text of less than 18 thousand 
MEDLINE documents.  While we might approximate 
the MeSH term with a text query it would be compli-
cated and probably never as accurate at reproducing 
the concept desired.  
The second dimension of indexing which we wish to 
consider is predictability.  If one cannot predict when 
an index term will be assigned, then to that extent one 
cannot know that it will be useful for retrieval. The 
level of inter-indexer agreement is a measure of pre-
dictability. Funk, et al.7 report inter-indexer consisten-
cies ranging from 0.3 to 0.6 for different types of 
MeSH term assignments in MEDLINE.  Such a lack of 
reliability or predictability may seem surprising, but a 
similar lack of predictability has been observed not 
only for indexing tasks, but for many other human 
tasks as well8-10.  
The third dimension of indexing is transparency. The 
easier it is to understand and learn the criteria for 
applying an index term, the more transparent we con-
sider that term to be. Only those who have learned the 
MeSH indexing system are able to use it to the great-
est advantage3. Clearly simplicity and ease of learn-
ing, or what we call transparency, is an important ideal 
for an indexing vocabulary.  
In this report we focus on predictability and transpar-
ency and compare text words and MeSH terms in 
MEDLINE on these two scales. To do this we use a 



state-of-the-art machine learning method to learn how 
to predict the assignment of an indexing term (either 
text word or MeSH term) and use a measure of per-
formance at this task as a measure of predictability. 
We also measure the complexity of the same learning 
as an estimate of the transparency of the terms. We 
fnd that MeSH terms are superior to text words in 
both predictability and transparency.  

METHODS 

We chose ten text words and ten MeSH terms for 
analysis. These words were chosen in all cases to 
occur in between 3,000 and 3,500 documents in the 
roughly 12 million document set that comprises 
MEDLINE.  For each such term we performed naïve 
Bayesian machine learning within all of MEDLINE to 
learn what documents containing the term are like and 
applied this to all the documents not containing the 
term and retrieved the 100,000 documents most 
closely related to those documents that contained the 
term. If x represents one of the terms let Gx denote the 
roughly 3,000 documents that contain the term and let 
Bx denote the 100,000 retrieved documents that are 
most closely related but do not contain the term. For 
each such x we build a database from Gx and Bx.  If x 
is a MeSH term this database contains representa-
tions of all the documents in terms of their text words 
(from titles and abstracts). Stop words are removed, 
but no stemming is done.  Two word phrases without 
punctuation or stop words are included. No MeSH 
terms are included.  If x is a text word the exact same 
text word representation of documents is produced 
with one exception. From the representation of the 
documents in Gx we remove all occurrences of the text 
word x. For all x we will denote the resultant database 
by Dx.  Machine learning is applied to Dx to learn how 
to predict which members of Dx are members of Gx.  
Machine learning. AdaBoost is a general machine 
learning strategy that depends on a machine learning 
method which is termed the weak learner. AdaBoost 
iterates the weak learner each time focusing on that 
part of the training data where the process has not yet 
succeeded in learning11. We use an improved version 
of Adaboost12 and boost binary decision trees where 
the splitting criterion is designed to minimize the error 
limit computed in Adaboost. We have exa mined trees 
of depths 1-5 and have found depth 4 to give the best 
results and that is what we report here. There is no set 
limit to the number of rounds of boosting to use in 
learning. However, in examining many rounds of 
boosting one generally sees improvement early and 
then a more or less stable performance.  In all cases 
we repeat the boosting by building another tree till we 
reach that iteration for which the performance is a 
maximum within the first 10,000 rounds of boosting. 
To apply this approach to a Dx we randomly divide Dx 
by  dividing Gx and Bx. Two thirds of Gx and two 

thirds of Bx are taken for a training set and the remain-
ing one third of each is used as a test set where per-
formance is evaluated.  
Evaluation of Transparency. We evaluate transpar-
ency in two ways. The simplest evaluation is the 
number of depth 4 decision trees made, i.e., the num-
ber of iterations of the algorithm in reaching peak 
performance. A somewhat more complicated, but we 
believe more accurate, method is the following. Let 
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This is an entropy and an estimate of how much in-
formation is involved in specifying which tree was 
responsible for correctly categorizing an arbitrary 
piece of the data that was correctly classified by the 
final set of decision trees that produce the best ob-
served performance on the test set13.  While this is 
somewhat of an average figure because the precisions 
are averages, it is nevertheless an estimate of how 
many bits of information would be required to specify 
the tree involved. If we can assume that all trees are 
roughly equal in complexity (all are depth 4 decision 
trees), then the result allows us to compare the com-
plexity of the information captured in learning to pre-
dict the different terms. It should be more accurate as 
an estimate of transparency than simply the number 
of trees. The lower the complexity, the more transpar-
ent the term. 
Evaluation of Predictability.  Because we use a ma-
chine learning method that ranks all the documents in 
the test set and attempts to rank documents from Gx 
above documents from Bx, it is convenient to score 
the result as an 11-point average precision. An 11-
point average precision is the average of precisions 
estimated at the eleven recall values 0%, 10%, 20%, 
...,90%, 100%. At each such recall value R the preci-
sion is estimated as the highest precision occurring at 
any rank cutoff where the recall is at least as great as 
R.  
In an attempt to better understand the limitations on 
predictability we have proposed a model for the 
assignment of an index term x throughout a document 
set D assuming D is indexed in equal parts by n dif-
ferent imperfect indexers.  For each , 1k k n≤ ≤ , let 

kD  denote that subset of documents from D that 

would be indexed by k  of the n indexers if all indexers 
indexed all documents in D.  Then the sets 
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are mutually disjoint and partition the data-

base D.  Assuming the documents are assigned ran-
domly to the indexers for actual indexing and only one 



indexer processes each document, then it is clear that 
within any Dk only a fraction /k n  of the documents 
receive the indexing term and there is no way to pre-
dict which documents are actually assigned the term. 
Thus in predicting which documents in Dk receive the 
index term there are two reasonable strategies. Either 
do not predict the term for Dk or predict the term for all 
of Dk with precision on Dk of /k n . In general we will 
not know what Dk is even in the training data because 
we do not have indexing duplicated n times by n 
different indexers. If, however, we assume that any 
indexer on the average assigns the indexing term to a 
fraction q of the documents and we also assume that 
indexers do this independent of each other, then we 
can estimate the size of Dk as a fraction of D.  The 
fraction is just the k th term in the binomial expansion. 
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If we assume as a best case that the Dk are ranked in 
decreasing order of k , then the precisions for the 
different sized pieces of Dk can be used to construct a 
recall-precision curve that is in some sense an upper 
bound on the predictability possible by any means 
human or machine. While the independence assump-
tion on which such a computation is based is not 
strictly true, we believe it is a useful approximation 
which can be justified on much the same basis that 
Bayesian retrieval models justify an independence 
assumption14, 15. We have applied this model calcula-
tion with different choices of q and n to approximate 
the recall-precision curves based on the machine 
learning for index term prediction. We have chosen a 
representative set to include in our results. The re-
sults are not rigorous as upper bounds on predictabil-
ity, but are only meant to be suggestive approxima-
tions of what may be true.  

RESULTS 

We selected ten MeSH terms in the frequency range 
described above and ten text words in the same fre-
quency range and chosen to be comparable to the 
MeSH terms in significance. The two sets of terms are 
listed in Tables 1 and 2, respectively. An attempt was 
made to choose the terms as pairs with a reasonably 
close relationship in order that comparisons between 
the two sets might be more meaningful. For example 
the first term in each table is the name of a non-
antibiotic drug, the second is the name of a class of 
antibiotic, and the third a term descriptive of some 
aspect of the nervous system, etc. The MeSH terms, 
however, have variations not available with text terms 
and we have included two starred MeSH terms and 
two MeSH term-qualifier pairs in our analysis.  

We also selected four of the pairs of terms analyzed in 
the tables and produced recall-precision curves and 
approximations to these curves coming from equation 
(2). These curves and their approximations are given 
in Figures 1 (MeSH) and 2.  In all cases we took n to 
 

Table 1. The data for ten MeSH terms relating to 
transparency and predictability. The data is based on 
the machine learning algorithm AdaBoost with deci-
sion trees as weak learner. 

Mesh Terms # of  
iterations 

 Com- 
plexity 

11- 
pap 

Atenolol 759 0.435 0.809 
Aminoglyco-
sides 

14 0.269 0.428 

Brain/ 
microbiology 

4338 0.577 0.257 

Canada/ 
epidemiology 

8701 1.782 0.542 

Ecology* 3330 0.554 0.299 
Fixatives 1881 0.351 0.351 
Hemolysis* 13 0.444 0.419 
Isomerases 1805 1.572 0.486 
Oregon 5639 1.458 0.635 
Polyradiculo-
neuritis 

7 0.114 0.519 

Average 2649 0.756 0.474 
 

Table 2. The data for ten text words relating to trans-
parency and predictability. The data is based on the 
machine learning algorithm AdaBoost with decision 
trees as weak learner. 

Text Words # of  
iterations 

 Com- 
plexity 

11- 
pap 

allopurinol 9394 1.725 0.453 
quinolones 1463 0.416 0.356 
neuropathology 9996 2.280 0.353 
korea 9614 2.180 0.465 
environmentally 8694 1.620 0.374 
biomarker 9863 1.068 0.212 
atelectasis 9831 1.516 0.291 
isomeric 9647 1.684 0.312 
ohio 8097 2.966 0.628 
spasticity 1928 1.326 0.397 
Average 7853 1.678 0.384 
 
equal 10 and determined a value of q that produced 
the same 11-point average precision as pertained to 
the experimental curve. An n of 10 is akin to  
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assuming the existence of 10 different criteria by 
which one could decide whether to assign an index 
term or not. There is a clear difference between the 
approximating curves and the experimental curves. 
The experimental curves are uniformly higher on the 
left side of the graph and lower on the right side.  This 
suggests that relatively few points tend to fall into the 
classes Dk with intermediate values of k , but rather to 
appear in the Dk with k  either nearer n or nearer 1 than 
predicted by (2). This points towards a lack of inde-
pendence in the data produced by different indexers. 

DISCUSSION 

It is natural to ask whether it could be valid to base 
our analysis on MEDLINE entries rather than on the 
full text documents which they represent. It is true 
that both the actual MeSH term assignment and the 
choice of words in the title and abstract constructed 
by an author depend on the full text. However the title 
and abstract tell a great deal about an article and it 
seems likely that valid conclusions can be based on 
results using just the MEDLINE entry. This is in fact 
the hypothesis on which previous work has been 
based3-6 and we make the same assumption.  
Another issue is the choice of the ten pairs of terms. 
These were not chosen randomly because of the need 
to pair the terms for similarity of meaning and signifi-
cance. There could be little validity in comparing a 
MeSH term and a text word if they did not have similar 
significance. We selected the pairs by examining the 
MeSH and text words in the specified frequency 
range and under the given constraints such pairs are 
few in number. Bias is of course possible, but it is 
unclear why it would effect our results. 
One may ask if the MeSH and text terms are receiving 
equal treatment. The text term is left out of the docu-
ments in which it occurs to produce the set Gx for 

learning while no text term is left out of Gx for a Mesh 
term. One needs to remember that text terms do not 
correlate with MeSH terms very well generally and 
that only one text term out of an average of approxi-
mately 150 per document is not likely to be significant. 
Another issue of importance is whether the machine 
learning method we use provides an accurate ap-
proximation to the transparency and predictability of 
an indexing term. In defense of our method we can 
point to two facts. First, the AdaBoost algorithm with 
decision trees as weak learner is one of the best, if not 
the best, automatic classification method for docu-
ments16-18.  Second, comparison of the results for 
MeSH and text words shows a strong consistency in 
the results. With regard to transparency, a compari-
son of all MeSH term-text word pairs shows that by 
both number of iterations and by the complexity 
measure MeSH terms are more transparent than text 
words.  Likewise the same pair wise comparison 
shows that in 8 out of 10 cases the MeSH terms have 
a higher 11-pap or predictability. This is true in spite 
of a positive correlation between complexity and 11-
pap within the text word set and no clear relationship 
between the two concepts within the MeSH term set. 
This argues strongly that our findings are not noise, 
but reflect a consistent relationship.  
Another aspect of our data that deserves comment is 
the meaning of the curves in the Figures coming from 
equation (2). While we do not know what n ought to 
be, it is clear from the study of Funk, et al. 7 that n is 
larger than 1. Indexers bring a variety of viewpoints to 
the indexing task.  An n of 10 was chosen as a moder-
ate number for illustrative purposes. The point to 
illustrate is that if indexers acted independently, then 
curves of this sort would be upper bounds for the 
experimental curves, i.e., it would be impossible by 
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Figure 2. Recall-precision curves for the experi-
mental text word data (dark) and approximations 
based on the independence assumption of equation 
(2). 

Figure 1. Recall-precision curves for the experi-
mental MeSH data (dark) and approximations 
based on the independence assumption of equation 
(2). 



any means to predict more accurately than these 
bounding curves.  
The data suggest, however, that indexers are not 
independent. This basically means that in most cases 
an index term would either be assigned to a document 
by most of the indexers or it would be assigned by 
only a few.  A sort of “law of the extremes” applies. 
The classes Dk still exist and with the same meaning, 
i.e., the best possible precision on documents in Dk is 
k/n. But the size of the Dk is not given by equation 
(2). There still must exist theoretically optimal upper 
bounding curves but they presumably have a shape 
more like the experimental curves. We simply need a 
better theory to determine them.  
While our results suggest an advantage for MeSH in 
transparency and predictability, the situation is 
somewhat complicated. MeSH has an absolute advan-
tage in predictability because MeSH terms are simply 
assigned more consistently to documents and one 
can have more assurance of what will be retrieved by 
their use as opposed to text words. The greater trans-
parency of MeSH terms also suggests an advantage 
for MeSH over text words in that the meaning of 
MeSH terms should be easier to learn. However, text 
words are more familiar to users so that there is usu-
ally less need to learn what they mean and how they 
are likely to be used in documents.  
Finally, there is the issue of coverage. Because there 
are so many more text words than MeSH terms  it is 
expected that text words would enjoy an advantage in 
coverage. However, MeSH terms are specifically 
crafted to represent areas of scientific interest. Thus 
one cannot simply assume that text words are supe-
rior as a language in which to express queries. We 
hope to investigate the issue of coverage for MeSH 
as opposed to text terms in future work.   
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